Mundo

Peruano resolve problema matemático indecifrável havia 271 anos

O matemático peruano Harald Andrés Helfgott conseguiu demonstrar a conjectura fraca de Goldbach, um problema da teoria dos números que ninguém havia conseguido resolver desde que foi proposta, em 1742. O responsável pela façanha tem 35 anos e vive em Paris, onde trabalha para o Centro Nacional para a Pesquisa Científica (CNRS, na sigla em francês). A conjectura afirma que "todo número ímpar maior que 5 pode ser expresso como soma de três números primos".

Matemática: conheça os sete problemas mais difíceis do século 21

O problema, proposto por Christian Goldbach há 271 anos, se converteu em dor de cabeça para os melhores matemáticos dos últimos três séculos. Desde 1923, com o esforço de nomes como G. H. Hardy e John Edensor Littlewood, foram obtidos avanços importantes para a comprovação da conjectura, porém ela ainda não havia sido demonstrada de maneira incondicional. Em 1937, o teorema de Vinogradov mostrou que qualquer número ímpar suficientemente grande pode ser representado como a soma de três números primos. A definição de "suficientemente grande", porém, ficou pendente.

Helfgott publicou, em 2012 e neste ano, dois trabalhos acadêmicos reivindicando a melhoria das estimações dos arcos maiores e menores - o suficiente para demonstrar definitivamente a conjectura fraca de Goldbach. O estudo pode ser consultado, em inglês, neste link.

No entanto, essa pesquisa dificilmente contribuirá para a comprovação da conjectura "forte" de Goldbach - um dos problemas mais antigos não resolvidos da matemática e considerada por muitos o problema mais difícil da história dessa ciência. De acordo com o próprio Helfgott, a conjetura de Goldbach "pode não ser resolvida nas nossas vidas". A versão forte postula que todo número par maior que 2 pode ser expressado pela soma de dois primos.

O matemático peruano estudou nas prestigiadas universidades americanas de Princeton e Yale e recebeu diversos prêmios por suas contribuições à matemática.

fonte: Terra

Comentários